Course Type	Course Code	Name of Course	L	Т	P	Credit
DC	NCHC507	Advanced Chemical Reaction Engineering	3	1	0	4

Course Objective

• To provide a comprehensive study of chemical reaction engineering including design of equipment and practical applications.

Learning Outcomes

 The students will have knowledge of multiphase reactor design with non-isothermal, heterogeneous catalysis and catalytic reaction engineering.

Unit No.	Description of Lectures	Class Hours	Learning Outcomes	
1.	Non- ideality: Review of analysis of isothermal reactors and non-ideality in reactors.	8 L + 3 T	Students learn the concepts of residence time distribution and micromixing and non-ideal reactor models.	
2.	Non catalytic Kinetics: Kinetics of fluid—particle non—catalytic reactions, fluid—fluid non—catalytic reactions and application to design.	10 L + 4 T	Students understand how to design reactors to carry out non-catalytic reactions.	
3.	Heterogeneous reactions: Diffusion and reaction: External diffusion effects on heterogeneous reaction, diffusion and reaction in spherical pellets, internal effectiveness factor, estimation of diffusion and reaction limited regimes, Wisz-Prater criterion for internal diffusion, Mears criterion for external diffusion, inter pellet heat and mass transfer.	10 L + 4 T	Students recognize the importance of diffusion effects in solid catalyzed reactions.	
4.	Solid catalysis: Introduction, definitions, catalytic properties, classification of catalysts, steps in catalytic reaction, adsorption isotherm, chemisorption's, synthesizing rate law, mechanism and rate limiting steps, deducing a rate law from the experimental data, finding a mechanism consistent with experimental observation, evaluation of rate law parameters, catalyst promoters and inhibitors, catalyst deactivation.	9 L + 3 T	Students learn the salient aspects of solid catalysts and apply the LHHW methodology to derive the rate law for heterogeneous reactions.	

5.	Catalyst characterization: Catalyst synthesis: impregnation and other techniques, physico-chemical characterization of catalyst.	5 L + 0 T	Students learn different methods to synthesize a catalyst and understand different catalyst characterization techniques.
	Total	56	

Textbooks:

- 1. Fogler, H. S. (2008). Elements of Chemical Reaction Engineering. 4th Ed., Prentice Hall.
- 2. Levenspiel, O. (2006). Chemical Reaction Engineering. 3rd Ed., Wiley.

Reference Books:

- 1. Carberry, J. J. (2001), Chemical and Catalytic Reaction Engineering. McGraw-Hill.
- 2. Froment, G. F., Bischoff, K. B., and De Wilde, J. (1979). *Chemical Reactor Analysis and Design*. Wiley.
- 3. Smith, J. M. (1981). Chemical Engineering Kinetics, McGraw-Hill. 3rd Edition.